Publications/Patents

2014
Etgar Lioz, Md K. Nazeeruddin, and Michael Grätzel. 2014. “Organo Metal Halide Perovskite Heterojunction Solar Cell and Fabrication Thereof.” WIPO (World Intellectual Prop Org) WO 2014/020499 Al.
2013
Waleed Abu Laban and Etgar Lioz. 9/2013. “Depleted hole conductor-free lead halide iodideheterojunction solar cells.” Energy Environ. Sci., 2013, 6, Pp. 3249–3253. Abstract

Lead halide perovskite is an excellent candidate for use as a light harvester in solar cells. Our work presents a depleted hole conductor free CH3NH3PbI3/TiO2 heterojunction solar cell using a thick CH3NH3PbI3 film. The CH3NH3PbI3 formed large crystals which function
simultaneously as light harvesters and as hole transportmaterials. We performed capacitance voltage measurements, which show a depletion regionwhich extends to both n and p sides. The built-in field of the depletion region assists in the charge separation and suppresses the back reaction of electrons from the TiO2 film to the CH3NH3PbI3 film. This depleted hole conductor free CH3NH3PbI3/TiO2 heterojunction solar cell provides a power conversion efficiency of 8% with a current density of 18.8 mA cm2, the highest efficiency achieved to date for perovskite based solar cells without a hole conductor.

depleted_hole_conductor-free_lead_halide_iodide_heterojunction_solar_cells.pdf
Etgar Lioz, Guillaume Schuchardt, Daniele Costenaro, Fabio Carniato, Chiara Bisio, Shaik M. Zakeeruddin, Mohammad K. Nazeeruddin, Leonardo Marchese, and Michael Graetzel. 6/2013. “Enhancing the open circuit voltage of dye sensitizedsolar cells by surface engineering of silica particles in agel electrolyte.” J. Mater. Chem. A, 2013, 1, Pp. 10142–10147. Abstract

We prepared a quasi-solid electrolyte for dye-sensitized solar cells (DSSCs) that consist of ionic liquid and modified silica particles. Commercial bare silica F5 particles and modified silica F5 by NH2 and NH3groups were prepared, and fully characterized. The best photovoltaic performance was observed using the NH2 modified silica particles giving an open circuit voltage (Voc) of 815 mV, a short-circuit current (Jsc) of 11.23 mA cm-2, and a fill factor (FF) of 0.75 corresponding to an overall power conversion efficiency of 7.04% at 100 mW cm-2 AM 1.5. The modification of the silica particles by NH2 groups increases the Voc of DSSCs by around 60 mV compared to pure ionic liquid electrolyte based DSSCs.

enhancing_the_open_circuit_voltage_of_dye_sensitized_solar_cells_by_surface_engineering_of_silica_particles_in_a_gel_electrolyte.pdf
Etgar Lioz. 2/2013. “Semiconductor Nanocrystals as Light Harvesters in Solar Cells.” Materials, 2013, 6, Pp. 445-459. Abstract

Photovoltaic cells use semiconductors to convert sunlight into electrical current
and are regarded as a key technology for a sustainable energy supply. Quantum dot-based
solar cells have shown great potential as next generation, high performance, low-cost
photovoltaics due to the outstanding optoelectronic properties of quantum dots and their
multiple exciton generation (MEG) capability. This review focuses on QDs as light
harvesters in solar cells, including different structures of QD-based solar cells, such as QD
heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent
development in organic-inorganic perovskite heterojunction solar cells. Mechanisms,
procedures, advantages, disadvantages and the latest results obtained in the field are
described. To summarize, a future perspective is offered.

semiconductor_nanocrystals_as_light_harvesters_in_solar_cells.pdf
Etgar Lioz, Diana Yanover, Richard Karel Cˇapek, Roman Vaxenburg, Zhaosheng Xue, Bin Liu, Mohammad Khaja Nazeeruddin, Efrat Lifshitz, and Michael Grätzel. 1/2013. “Core/Shell PbSe/PbS QDs TiO2 Heterojunction Solar Cell.” Adv. Funct. Mater., 2013, 23, Pp. 2736–2741.
coreshell_pbsepbs_qds_tio2_heterojunction_solar_cell.pdf
Takafumi Fukumoto, Thomas Moehl, Yusuke Niwa, Md. K. Nazeeruddin, Michael Grätzel, and Etgar Lioz. 2013. “Effect of Interfacial Engineering in Solid-State Nanostructured Sb2S3 Heterojunction Solar Cells.” Adv. Energy Mater, 2013, 3, Pp. 29–33.
effect_of_interfacial_engineering_in_solid-state_nanostructured_sb2s3_heterojunction_solar_cells.pdf
Etgar Lioz, HyoJoong Lee, Md K. Nazeeruddin, and Grätzel Michael. 2013. “Semiconductor quantum dot sensitized TiO2 mesoporous solar cells.” In Colloidal Quantum Dot Optoelectronics and Photovoltaics, Pp. 292-309. Cambridge University Press.
Etgar Lioz. 2013. “Thin Film Solar Cells based on Quantum Dots.” In Light Energy Conversion . Wiley-Inter science Series on Nanotechnology.
2012
Etgar Lioz, Peng Gao, Zhaosheng Xue, Qin Peng, Aravind Kumar Chandiran, Bin Liu, Md. K. Nazeeruddin, and Michael Grätzel. 10/2012. “Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells.” J. Am. Chem. Soc., 2012, 134, Pp. 17396−17399.
mesoscopic_ch3nh3pbi3_tio2_heterojunction_solar_cells.pdf
Etgar Lioz, James S. Bendall, Vincent Laporte, Mark E. Welland, and Michael Graetzel. 9/2012. “Reducing recombination in ZnO photoanodes for dye sensitised solar cellsthrough simple chemical synthesis.” J. Mater. Chem., 2012, 22, Pp. 24463–24468.
reducing_recombination_in_zno_photoanodes_for_dye_sensitised_solar_cells_through_simple_chemical_synthesis.pdf
Etgar Lioz, Thomas Moehl, Stefanie Gabriel, Stephen G. Hickey, Alexander Eychmu¨ ller, and Michael Gra¨ tzel. 3/2012. “Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells.” ACS Nano, 2012, 4, Pp. 3092–3099.
light_energy_conversion_by_mesoscopic_pbs_quantum_dots_tio2_heterojunction_solar_cells.pdf
Etgar Lioz, Jinhyung Park, Claudia Barolo, Vladimir Lesnyak, Subhendu K. Panda, Pierluigi Quagliotto, Stephen G. Hickey, Md. K. Nazeeruddin, Alexander Eychmu¨ ller, Guido Viscardi, and Michael Gra¨ tzel. 2/2012. “Enhancing the efficiency of a dye sensitized solar cell due to the energytransfer between CdSe quantum dots and a designed squaraine dye.” RSC Adv., 2012, 2, Pp. 2748–2752.
enhancing_the_efficiency_of_a_dye_sensitized_solar_cell_due_to_the_energy_transfer_between_cdse_quantum_dots_and_a_designed_squaraine_dye.pdf
Etgar Lioz, Wei Zhang, Stefanie Gabriel, Stephen G. Hickey, Md K. Nazeeruddin, Alexander Eychmüller, Bin Liu, and Michael Grätzel. 1/2012. “High Efficiency Quantum Dot Heterojunction Solar CellUsing Anatase (001) TiO2 Nanosheets.” Adv. Mater., 2012, 24, Pp. 2202–2206.
high_efficiency_quantum_dot_heterojunction_solar_cell_using_anatase_001_tio2_nanosheets.pdf
Etgar Lioz and Michael Grätzel. 2012. “Solid state PbS Quantum dots /TiO2 Nanoparticles heterojunction solar cell.” MRS Proceedings, 2012, 1390.
2011
Etgar Lioz, Jinhyung Park, Claudia Barolo, Md. K. Nazeeruddin, Guido Viscardi, and Michael Graetzel. 8/2011. “Design and Development of Novel Linker for PbS Quantum Dots/TiO2 Mesoscopic Solar cell.” ACS Appl. Mater. Interfaces, 2011, 3, Pp. 3264–3267.
design_and_development_of_novel_linker_for_pbs_quantum_dots_tio2_mesoscopic_solar_cell.pdf
D. Aaron R. Barkhouse, Ratan Debnath, Illan J. Kramer, David Zhitomirsky, Andras G. Pattantyus-Abraham, Larissa Levina, Etgar Lioz, Michael Grätzel, and Edward H. Sargent. 5/2011. “Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics.” Adv. Mater., 2011, 23, Pp. 3134–3138.
depleted_bulk_heterojunction_colloidal_quantum_dot_photovoltaics.pdf
James S. Bendall, Etgar Lioz, Swee Ching Tan, Ning Cai, Peng Wang, Shaik M. Zakeeruddin, Michael Grätzel, and Mark E. Welland. 5/2011. “An efficient DSSC based on ZnO nanowire photo-anodes and a new D-p-Aorganic dye.” Energy Environ. Sci., 2011, 4, Pp. 2903–2908.
an_efficient_dssc_based_on_zno_nanowire_photo-anodes_and_a_new_d-p-a_organic_dye.pdf
Aravind Kumar Chandiran, Frederic Sauvage, Etgar Lioz, and Michael Grätzel. 4/2011. “Ga3+ and Y3+ Cationic Substitution in Mesoporous TiO2 Photoanodesfor Photovoltaic Applications.” J. Phys. Chem. C, 2011, 115, Pp. 9232–9240.
ga3_and_y3_cationic_substitution_in_mesoporous_tio2_photoanodes_for_photovoltaic_applications.pdf
2010
Etgar Lioz, Arie Nakhmani, Allen Tannenbaum, Efrat Lifshitz, and Rina Tannenbaum. 4/2010. “Trajectory control of PbSe–γ-Fe2O3 nanoplatforms under viscousflow and an external magnetic field.” Nanotechnology, 2010, 21, 17, Pp. 175702.
trajectory_control_of_pbse-g-fe2o3_nanoplatforms_under_viscous_flow_and_an_external_magnetic_field.pdf
A. Nakhmani, L. Etgar, A. Tannenbaum, E. Lifshitz, and R. Tannenbaum. 2010. “Visual Motion Analysis of Nanoplatforms Flow under an ExternalMagnetic Field.” Nanotech , 2010, 2, Pp. 504-507.
visual_motion_analysis_of_nanoplatforms_flow_under_an_external_magnetic_field.pdf

Pages