Abstract The influence of the Schottky contact is studied for hole transport material (HTM) free
CH3NH3PbI3 perovskite solar cells (PSCs), by using drift-diffusion and small signal models. The basic
current-voltage and capacitance-voltage characteristics are simulated in reasonable agreement with experimental
data. The build in potential of the finite CH3NH3PbI3 layer is extracted from a Mott-Schottky
capacitance analysis. Furthermore, hole collector conductors with work-functions of more than 5.5 eV are
proposed as solutions for high efficiency HTM-free CH3NH3PbI3 PSCs.
influence_of_schottky_contact_on_the_c-v_and_j-v_characteristics.pdfChongwen Li, Yuanyuan Zhou, Yue Chang Li Wang, Yingxia Zong, Etgar Lioz, Guanglei Cui, Nitin P. Padture, and Shuping Pang. 5/19/2017. “
Methylammonium-Mediated Evolution of Mixed-Organic-CationPerovskite Thin Films: A Dynamic Composition-Tuning Process.” Angew. Chem. Int. Ed., 2017,56, Pp. 7674 –7678.
methylammonium.png
methylammonium-mediated_evolution_of_mixed-organic-cation.pdf Yue Chang, Li Wang, Jiliang Zhang, Zhongmin Zhou, Chongwen Li, Bingbing Chen, Etgar Lioz, Guanglei Cui, and Shuping Pang. 2/10/2017. “
CH3NH2 gas induced (110) preferred cesiumcontainingperovskite films with reduced PbI6octahedron distortion and enhanced moisturestability.” J. Mater. Chem. A, 2017,5, Pp. 4803–4808.
Abstract We report here the discovery of a fancy interaction between cesium iodide (CsI) and methylamine (CH3NH2) due to the presence of the hydrogen bond. The formed CsI$xCH3NH2 is a liquid phase, which facilitates the large scale fabrication of highly uniform cesium-containing perovskite films with strong (110) preferred orientation by the CH3NH2 gas healing process. With this method, at most 10% nonpolar Cs cations could fully dope into the crystal lattice and extremely enhance the interaction of the inorganic framework with a more
symmetrical PbI6 octahedron, resulting in obvious improvement in moisture stability under continuous illumination.
ch3nh2_gas_induced_110_preferred_cesiumcontaining.pdf
ch3.png