Publications by Type: Journal Articles

2013
Etgar Lioz, Guillaume Schuchardt, Daniele Costenaro, Fabio Carniato, Chiara Bisio, Shaik M. Zakeeruddin, Mohammad K. Nazeeruddin, Leonardo Marchese, and Michael Graetzel. 6/2013. “Enhancing the open circuit voltage of dye sensitizedsolar cells by surface engineering of silica particles in agel electrolyte.” J. Mater. Chem. A, 2013, 1, Pp. 10142–10147. Abstract

We prepared a quasi-solid electrolyte for dye-sensitized solar cells (DSSCs) that consist of ionic liquid and modified silica particles. Commercial bare silica F5 particles and modified silica F5 by NH2 and NH3groups were prepared, and fully characterized. The best photovoltaic performance was observed using the NH2 modified silica particles giving an open circuit voltage (Voc) of 815 mV, a short-circuit current (Jsc) of 11.23 mA cm-2, and a fill factor (FF) of 0.75 corresponding to an overall power conversion efficiency of 7.04% at 100 mW cm-2 AM 1.5. The modification of the silica particles by NH2 groups increases the Voc of DSSCs by around 60 mV compared to pure ionic liquid electrolyte based DSSCs.

enhancing_the_open_circuit_voltage_of_dye_sensitized_solar_cells_by_surface_engineering_of_silica_particles_in_a_gel_electrolyte.pdf
Etgar Lioz. 2/2013. “Semiconductor Nanocrystals as Light Harvesters in Solar Cells.” Materials, 2013, 6, Pp. 445-459. Abstract

Photovoltaic cells use semiconductors to convert sunlight into electrical current
and are regarded as a key technology for a sustainable energy supply. Quantum dot-based
solar cells have shown great potential as next generation, high performance, low-cost
photovoltaics due to the outstanding optoelectronic properties of quantum dots and their
multiple exciton generation (MEG) capability. This review focuses on QDs as light
harvesters in solar cells, including different structures of QD-based solar cells, such as QD
heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent
development in organic-inorganic perovskite heterojunction solar cells. Mechanisms,
procedures, advantages, disadvantages and the latest results obtained in the field are
described. To summarize, a future perspective is offered.

semiconductor_nanocrystals_as_light_harvesters_in_solar_cells.pdf
Etgar Lioz, Diana Yanover, Richard Karel Cˇapek, Roman Vaxenburg, Zhaosheng Xue, Bin Liu, Mohammad Khaja Nazeeruddin, Efrat Lifshitz, and Michael Grätzel. 1/2013. “Core/Shell PbSe/PbS QDs TiO2 Heterojunction Solar Cell.” Adv. Funct. Mater., 2013, 23, Pp. 2736–2741.
coreshell_pbsepbs_qds_tio2_heterojunction_solar_cell.pdf
Takafumi Fukumoto, Thomas Moehl, Yusuke Niwa, Md. K. Nazeeruddin, Michael Grätzel, and Etgar Lioz. 2013. “Effect of Interfacial Engineering in Solid-State Nanostructured Sb2S3 Heterojunction Solar Cells.” Adv. Energy Mater, 2013, 3, Pp. 29–33.
effect_of_interfacial_engineering_in_solid-state_nanostructured_sb2s3_heterojunction_solar_cells.pdf
2012
Etgar Lioz, Peng Gao, Zhaosheng Xue, Qin Peng, Aravind Kumar Chandiran, Bin Liu, Md. K. Nazeeruddin, and Michael Grätzel. 10/2012. “Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells.” J. Am. Chem. Soc., 2012, 134, Pp. 17396−17399.
mesoscopic_ch3nh3pbi3_tio2_heterojunction_solar_cells.pdf
Etgar Lioz, James S. Bendall, Vincent Laporte, Mark E. Welland, and Michael Graetzel. 9/2012. “Reducing recombination in ZnO photoanodes for dye sensitised solar cellsthrough simple chemical synthesis.” J. Mater. Chem., 2012, 22, Pp. 24463–24468.
reducing_recombination_in_zno_photoanodes_for_dye_sensitised_solar_cells_through_simple_chemical_synthesis.pdf
Etgar Lioz, Thomas Moehl, Stefanie Gabriel, Stephen G. Hickey, Alexander Eychmu¨ ller, and Michael Gra¨ tzel. 3/2012. “Light Energy Conversion by Mesoscopic PbS Quantum Dots/TiO2 Heterojunction Solar Cells.” ACS Nano, 2012, 4, Pp. 3092–3099.
light_energy_conversion_by_mesoscopic_pbs_quantum_dots_tio2_heterojunction_solar_cells.pdf
Etgar Lioz, Jinhyung Park, Claudia Barolo, Vladimir Lesnyak, Subhendu K. Panda, Pierluigi Quagliotto, Stephen G. Hickey, Md. K. Nazeeruddin, Alexander Eychmu¨ ller, Guido Viscardi, and Michael Gra¨ tzel. 2/2012. “Enhancing the efficiency of a dye sensitized solar cell due to the energytransfer between CdSe quantum dots and a designed squaraine dye.” RSC Adv., 2012, 2, Pp. 2748–2752.
enhancing_the_efficiency_of_a_dye_sensitized_solar_cell_due_to_the_energy_transfer_between_cdse_quantum_dots_and_a_designed_squaraine_dye.pdf
Etgar Lioz, Wei Zhang, Stefanie Gabriel, Stephen G. Hickey, Md K. Nazeeruddin, Alexander Eychmüller, Bin Liu, and Michael Grätzel. 1/2012. “High Efficiency Quantum Dot Heterojunction Solar CellUsing Anatase (001) TiO2 Nanosheets.” Adv. Mater., 2012, 24, Pp. 2202–2206.
high_efficiency_quantum_dot_heterojunction_solar_cell_using_anatase_001_tio2_nanosheets.pdf
Etgar Lioz and Michael Grätzel. 2012. “Solid state PbS Quantum dots /TiO2 Nanoparticles heterojunction solar cell.” MRS Proceedings, 2012, 1390.
2011
Etgar Lioz, Jinhyung Park, Claudia Barolo, Md. K. Nazeeruddin, Guido Viscardi, and Michael Graetzel. 8/2011. “Design and Development of Novel Linker for PbS Quantum Dots/TiO2 Mesoscopic Solar cell.” ACS Appl. Mater. Interfaces, 2011, 3, Pp. 3264–3267.
design_and_development_of_novel_linker_for_pbs_quantum_dots_tio2_mesoscopic_solar_cell.pdf
D. Aaron R. Barkhouse, Ratan Debnath, Illan J. Kramer, David Zhitomirsky, Andras G. Pattantyus-Abraham, Larissa Levina, Etgar Lioz, Michael Grätzel, and Edward H. Sargent. 5/2011. “Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics.” Adv. Mater., 2011, 23, Pp. 3134–3138.
depleted_bulk_heterojunction_colloidal_quantum_dot_photovoltaics.pdf
James S. Bendall, Etgar Lioz, Swee Ching Tan, Ning Cai, Peng Wang, Shaik M. Zakeeruddin, Michael Grätzel, and Mark E. Welland. 5/2011. “An efficient DSSC based on ZnO nanowire photo-anodes and a new D-p-Aorganic dye.” Energy Environ. Sci., 2011, 4, Pp. 2903–2908.
an_efficient_dssc_based_on_zno_nanowire_photo-anodes_and_a_new_d-p-a_organic_dye.pdf
Aravind Kumar Chandiran, Frederic Sauvage, Etgar Lioz, and Michael Grätzel. 4/2011. “Ga3+ and Y3+ Cationic Substitution in Mesoporous TiO2 Photoanodesfor Photovoltaic Applications.” J. Phys. Chem. C, 2011, 115, Pp. 9232–9240.
ga3_and_y3_cationic_substitution_in_mesoporous_tio2_photoanodes_for_photovoltaic_applications.pdf
2010
Etgar Lioz, Arie Nakhmani, Allen Tannenbaum, Efrat Lifshitz, and Rina Tannenbaum. 4/2010. “Trajectory control of PbSe–γ-Fe2O3 nanoplatforms under viscousflow and an external magnetic field.” Nanotechnology, 2010, 21, 17, Pp. 175702.
trajectory_control_of_pbse-g-fe2o3_nanoplatforms_under_viscous_flow_and_an_external_magnetic_field.pdf
A. Nakhmani, L. Etgar, A. Tannenbaum, E. Lifshitz, and R. Tannenbaum. 2010. “Visual Motion Analysis of Nanoplatforms Flow under an ExternalMagnetic Field.” Nanotech , 2010, 2, Pp. 504-507.
visual_motion_analysis_of_nanoplatforms_flow_under_an_external_magnetic_field.pdf
2009
Alexander Zakrassov, Arkady Bitler, Etgar Lioz, Gregory Leitus, Efrat Lifshitz, and Ron Naaman. 7/2009. “Controlling the anisotropic magnetic dipolar interactions of PbSe self assembled nanoparticles on GaAs.” Phys. Chem. Chem. Phys., 2009, 11, Pp. 7549–7552.
controlling_the_anisotropic_magnetic_dipolar_interactions_of_pbse_self-assembled_nanoparticles_on_gaas.pdf
Etgar Lioz, Gregory Leitus, Leonid Fradkin, Yehuda G. Assaraf, Rina Tannenbaum, and Efrat Lifshitz. 7/2009. “Optical and Magnetic Properties of PbSe Quantum Dots-γ-Fe2O3 Nanoparticles Conjugate Structures.” ChemPhysChem, 2009, 10, Pp. 2235 – 2241.
optical_and_magnetic_properties_of_pbse_quantum_dots-g-fe2o3_nanoparticles_conjugate_structures.pdf
Etgar L, Arie Nahmani, Allen Tannenbaum, Efrat Lifshitz, and Rina Tannenbaum. 2009. “Flow behavior of PbSe-Fe2O3 nanoplatforms under viscous flow and an external magnetic field.” Mater. Res. Soc. Symp. Proc.
2008
Etgar Lioz, Efrat Lifshitz, and Rina Tannenbaum. 4/2008. “Synthesis of water-soluble PbSe quantum dots.” J. Mater. Res, 2008, 23, 4, Pp. 899-903.
synthesis_of_water_soluble_pbse_quantum_dots.pdf

Pages