Enhancing the open circuit voltage of dye sensitizedsolar cells by surface engineering of silica particles in agel electrolyte

Citation:

Etgar Lioz, Guillaume Schuchardt, Daniele Costenaro, Fabio Carniato, Chiara Bisio, Shaik M. Zakeeruddin, Mohammad K. Nazeeruddin, Leonardo Marchese, and Michael Graetzel. 6/2013. “Enhancing the open circuit voltage of dye sensitizedsolar cells by surface engineering of silica particles in agel electrolyte.” J. Mater. Chem. A, 2013, 1, Pp. 10142–10147.

Abstract:

We prepared a quasi-solid electrolyte for dye-sensitized solar cells (DSSCs) that consist of ionic liquid and modified silica particles. Commercial bare silica F5 particles and modified silica F5 by NH2 and NH3groups were prepared, and fully characterized. The best photovoltaic performance was observed using the NH2 modified silica particles giving an open circuit voltage (Voc) of 815 mV, a short-circuit current (Jsc) of 11.23 mA cm-2, and a fill factor (FF) of 0.75 corresponding to an overall power conversion efficiency of 7.04% at 100 mW cm-2 AM 1.5. The modification of the silica particles by NH2 groups increases the Voc of DSSCs by around 60 mV compared to pure ionic liquid electrolyte based DSSCs.

Last updated on 12/26/2017